Wednesday, 5 June 2013

Hardenability Concepts

The  goal  of  heat  treatment  of  steel  is  very  often  to  attain  a  satisfactory  hardness.  The  important  microstructural  phase  is then  normally  martensite,  which  is  the  hardest  constituent  in  low-alloy  steels.  The  hardness  of  martensite  is  primarily dependent on its carbon content as is shown in Fig. 13.

If the microstructure is not fully martensitic, its hardness is lower. In  practical  heat  treatment,  it  is  important  to  achieve  full  hardness  to  a  certain  minimum  depth  after  cooling,  that  is,  to obtain  a  fully  martensitic  microstructure  to  a  certain  minimum  depth,  which  also  represents  a  critical  cooling  rate.  If  a given steel does not permit a martensitic structure to beformed to this depth, one has to choose another steel with a higher hardenability  (the  possibility  of  increasing  the  cooling  rate  at  the  minimum  depth  will  be  discussed  later).

There  are various  ways  to  characterize  the  hardenability  of  a  steel.  Certain  aspects  of  this  will  be  discussed  in  the  following  article in  the  Section  and  has  also  been  described  in  detail  in  previous  ASM  Handbooks,  formerly  Metals  Handbooks  (Ref  23). The  CCT  diagram  can  serve  this  purpose  if  one  knows  the  cooling  rate  at  the  minimum  depth.  The  CCT  diagrams constructedaccording to Atkinsor Thelning presented above are particularly suitable.

CCT Diagrams

As  for  heating  diagrams,  it  is  important  to  clearly  state  what  type  of  cooling  curve  the  transformation  diagram  was derived from. Use of a constant cooling rate is very common in experimental practice. However, this regime rarely occurs in a  practical  situation. One can  also find curves  for  so-called  natural cooling  rates according to Newton's law  of  cooling.

These curves simulate the behavior in the interior of a large part such as the cooling rate of a Jominy bar at some distance from  the  quenched  end.  Close  to  the  surface  the  characteristics  of  the  cooling  rate  can  be  very  complex  as  will  be described  below.  In  the  lower  part  of  Fig.  9  is  shown  a  CCT  diagram  (fully  drawn  lines)  for  4130  steel.  Ferrite,  pearlite, and  bainite  regions  are  indicated  as  well  as  the Ms temperature.  Note  that  theMs temperature  is  not  constant  when martensite formation is preceded by bainite formation, but typically decreases with longer times.

The effect of different cooling curves is shown in Fig. 10. Each CCT diagram contains a family of curves representing the cooling  rates  at  different  depths  of  a  cylinder  with  a  300  mm  (12  in.)  diameter.  The  slowest  cooling  rate  represents  the center  of  the  cylinder. As  shown  in  Fig.  10,  the  rate  of cooling  and the  position  of  the  CCT  curves depend  on the  cooling medium  (water  produced  the  highest  cooling  rate  followed  by  oil  and  air,  respectively).  The  more  severe  the  cooling medium, the longer the times to which the C-shaped curves are shifted. The Ms temperature is unaffected.

Decomposition of Austenite

The  procedure  starts  at  a  high  temperature,  normally  in  the  austenitic  range  after holding  there  long  enough  to  obtain  homogeneous  austenite  without  undissolved  carbides,  followed  by  rapid  cooling  to
the  desired  hold  temperature  (Fig.  5).  An  example  of  an  IT  diagram  is  given  in  Fig.  6. 

The  cooling  was  started  from  850 °C  (1560  °F).  TheA1  andA3  temperatures  are  indicated  as  well  as  the  hardness.  AboveA3  no  transformation  can  occur. BetweenA1  andA3  only  ferrite  can  form  from  austenite.  In  Fig.  6,  a  series  of  isovolume  fraction  curves  are  shown; normally  only  the  1%  and  99%  curves  are  reproduced.  Notice  that  the  curves  are  C-shaped. 

This  is  typical  for transformation  curves.  A  higher-temperature  set  of  C-shaped  curves  shows  the  transformation  to  pearlite  and  a  lowertemperature  set  indicates  the  transformation  to  bainite.  In  between  is  found  a  so-called  austenite  bay,  common  for  certain low-alloy steelscontaining appreciable amountsof carbide-forming alloying elements such aschromium or molybdenum.

Formation of Austenite

During  the  formation  of  austenite  from  an  original  microstructure  of  ferrite  and pearlite  or  tempered  martensite,  the  volume  (and  hence  the  length)  decreases  with  the  formation  of  the  dense  austenite
phase  (see  Fig.  3).  From  the  elongation  curves,  the  start  and  finish  times  for  austenite  formation,  usually  defined  as  1% and  99%  transformation,  respectively,  can  be  derived.  These  times  are  then  conveniently  plotted  on  a  temperature-log time  diagram  (Fig.  4). 

Also  plotted  in  this  diagram  are  the  Ac1  and  Ac3  temperatures.  Below  Ac1  no  austenite  can  form, and  between  Ac1  and  Ac3  the  end  product  is  a  mixture  of  ferrite  and  austenite.  Notice  that  a  considerable  overheating  is required  to  complete  the  transformation  in  a  short  time.  The  original  microstructure  also  plays  a  great  role.  A  finely distributed  structure  like  tempered  martensite  is  more  rapidly  transformed  to  austenite  than,  for  instance,  a  ferriticpearlitic  structure.  This  is  particularly  true  for  alloyed  steels  with  carbide-forming  alloying  elements  such  as  chromium and  molybdenum.  It  is  important  that the heating rate to the hold  temperature be very high  if a true  isothermal diagram  is to be obtained.

Isothermal Transformation Diagrams

This  type  of  diagram  shows  what  happens  when  a  steel  is  held  at  a  constant  temperature  for  a  prolonged  period.  The development  of  the  microstructure  with  time  can  be  followed  by  holding  small  specimens  in  a  lead  or  salt  bath  and quenching  them  one  at  a  time  after  increasing  holding  times  and  measuring  the  amount  of  phases  formed  in  the microstructure  with  the  aid  of  a  microscope.  An  alternative  method  involves  using  a  single  specimen  and  a  dilatometer which  records  the  elongation  of  the  specimen  as  a  function  of  time.  The  basis  for  the  dilatometer  method  is  that  the microconstituents undergo different volumetric changes (Table 3). A thorough description of the dilatometric method can.

Transformation Diagrams

The  kinetic aspects  of phase transformations are as important as  the equilibrium diagrams  for the heat treatment  of  steels.
The  metastable  phase  martensite  and  the  morphologically  metastable  microconstituent  bainite,  which  are  of  extreme
importance  to  the  properties  of  steels,  can  generally  form  with  comparatively  rapid  cooling  to  ambient  temperature,  that
is, when the diffusion of carbon and alloying elements is suppressed or limited to a very short range. Bainite is a eutectoid
decomposition that isa mixture offerrite and cementite. Martensite,the hardestconstituent, formsduring severe quenches
from  supersaturated  austenite  by  a  shear  transformation.  Its  hardness  increases  monotonically  with  carbon  content  up  to
about  0.7  wt%.  If  these  unstable  metastable  products  are  subsequently  heated  to  a  moderately  elevated  temperature,  they
decompose to more  stable  distributions  of  ferrite and  carbide. The  reheating process  is  sometimes known as  tempering or
annealing.
The  transformation  of  an  ambient  temperature  structure  like  ferrite-pearlite  or  tempered  martensite  to  the  elevatedtemperature structure of austeniteor austenite + carbideisalso of importance in the heat treatment of steel.
One  can  conveniently  describe  what  is  happening  during  transformation  with  transformation  diagrams.  Four  different
typesof such diagramscan be distinguished. These include:
·  Isothermal  transformation  diagrams  describing  the  formation  of  austenite,  which  will  be  referred  to  as
ITh diagrams
·  Isothermal  transformation  (IT)  diagrams,  also  referred  to  as  time-temperature-transformation  (TTT)
diagrams, describingthe decompositionof austenite
·  Continuous heatingtransformation (CHT) diagrams
·  Continuous cooling transformation (CCT) diagrams

TheFe-CPhaseDiagram 2

The  Fe-C  diagram  in  Fig.  1  is  of  experimental  origin.  The  knowledge  of  the  thermodynamic  principles  and  modern
thermodynamic  data  now  permits  very  accurate  calculations  of  this  diagram  (Ref  4).  This  is  particularly  useful  when
phase  boundaries  must  be  extrapolated  and  at  low  temperatures  where  the  experimental  equilibria  are  extremely  slow  to
develop.
If  alloying  elements  are  added  to  the  iron-carbon  alloy  (steel),  the  position  of  theA1,A3,  andAcm  boundaries  and  the
eutectoid  composition  are  changed.  Classical  diagrams  introduced  by  Bain  (Ref  5)  show  the  variation  ofA1  and  the
eutectoid  carbon  content  with  increasing  amount  of  a  selected  number  of  alloying  elements  (Fig.  2).  It  suffices  here  to
mention  that  (1)  all  important  alloying  elements  decrease  the  eutectoid  carbon  content,  (2)  the  austenite-stabilizing
elements manganese and nickel decreaseA1, and (3) the ferrite-stabilizing elements chromium, silicon, molybdenum, and
tungsten  increaseA1.  These  classifications  relate  directly  to  the  synergisms  in  quench  hardening  as  described  in  the
articles  "Quantitative  Prediction  of  Transformation  Hardening  in  Steels"  and  "Quenching  of  Steel"in  this  Volume.
Modern  thermodynamic  calculations  allow  accurate  determinations  of  these  shifts  that  affect  the  driving  force  for  phase
transformation  (see  below).  These  methods  also  permit  calculation  of  complete  ternary  and  higher-order  phase  diagrams
including alloy carbides(Ref 6). Reference should be made to the Calphad computer system (Ref7).

The Fe-C PhaseDiagram

The  basis  for  the  understanding  of  the  heat  treatment  of  steels  is  the  Fe-C  phase  diagram    Because  it  is  well
explained  in  earlier  volumes  of  ASM  Handbook,  formerly  Metals  Handbook  (Ref  1,  2,  3),  and  in  many  elementary
textbooks,  it  will  be  treated  very  briefly  here.  Figure  1  actually  shows  two  diagrams;  the  stable  iron-graphite  diagram
(dashed  lines)  and  the  metastable  Fe-Fe3C  diagram.  The  stable  condition  usually  takes  a  very  long  time  to  develop,
especially in the low-temperature and low-carbon range, and therefore the metastable diagram is of more interest. The FeC diagram showswhich phases are to be expected at equilibrium (or metastable equilibrium) for different combinationsof
carbon  concentration  and  temperature.  Table  1  provides  a  summary  of  important  metallurgical  phases  and
microconstituents.  We  distinguish  at  the  low-carbon  end  ferrite(α-iron),  which  can  at  most  dissolve  0.028  wt%  C  at  727
°C (1341 °F) and austenite(γ-iron), which can dissolve 2.11 wt% C at 1148 °C (2098 °F). At the carbon-rich side we find
cementite  (Fe3C).  Of  less  interest,  except  for  highly  alloyed  steels,  is  the  δ-ferrite  existing  at  the  highest  temperatures.
Between  the  single-phase  fields  are  found  regions  with  mixtures  of  two  phases,  such  as  ferrite  +  cementite,  austenite  +
cementite,  and  ferrite  +  austenite.  At  the  highest  temperatures,  the  liquid  phase  field  can  be  found  and  below  this  are  the
two  phase  fields  liquid  +  austenite,  liquid  +  cementite,  and  liquid  + δ-ferrite.  In  heat  treating  of  steels,  the  liquid  phase  is
always  avoided.  Some  important  boundaries  at  single-phase  fields  have  been  given  special  names  that  facilitate  the
discussion. These include:
·  A1, theso-called eutectoid temperature, which is the minimumtemperature for austenite
·  A3
,  the  lower-temperature  boundary  of  the  austenite  region  at  low  carbon  contents,  that  is,  the  γ/γ  +  α
boundary
·  Acm, the counterpartboundaryfor high carbon contents, that is, the γ/γ + Fe3C boundary
Sometimes the  letters  c,  e,  or  r are included.  Relevant definitions  of terms associated with phase  transformations  of  steels
can  be  found  in  Table  2  as  well  as  the  Glossary  of  Terms  in  this  Volume  and  Ref  3.  The  carbon  content  at  which  the
minimum  austenite  temperature  is  attained  is  called  the  eutectoid  carbon  content  (0.77  wt%  C).  The  ferrite-cementite
phase mixture  of  this composition formed during cooling has a characteristic appearance and  is called  pearlite and can  be
treated  as  a  microstructural  entity  or  microconstituent.  It  is  an  aggregate  of  alternating  ferrite  and  cementite  lamellae  that
degenerates  ("spheroidizes"  or  "coarsens")  into  cementite  particles  dispersed  with  a  ferrite  matrix  after  extended  hold

Monday, 3 June 2013

Build Lion of yourself



How to Strengthen Character

edits by:Difu Wu, Know Jesus, the Truth who shall set you free--fundamentally, Eric, Maluniu (see all)
Article
Edit
Discuss
View History


 Build your character to have strength like a lion

Character, from the Greek word "χαρακτήρα", was a term originally used for a mark impressed upon a coin. Nowadays, it is known as the sum of all the attributes, such as integrity, courage, fortitude, honesty, and loyalty, in a person. Character is perhaps the most important essence a person can possess, as it defines who a person is. To strengthen one's character is to mold oneself into a productive person within one's sphere of influence. Here is some advice on how to strengthen your own character, or to train your moral discipline.

edit
Steps
1

 Strength of character is about freedom from prejudices so that you love others as yourself, by extending yourself in kindness and concern (freely, to the others' benefit).
Know what constitutes strength in character. Strength in character consists of having the qualities that allow you to exercise control over your instincts and passions, to master yourself, and to resist the myriad temptations that constantly confront you. Moreover, strength in character is freedom from biases and prejudices of the mind, and is about displaying tolerance, love, and respect for others.


2

 Strength in character allows you to accomplish your goals.
Understand why strength of character is important to yourself and especially to others:
Strength of character allows you to carry out your will freely, while enabling you to cope with setbacks. It assists you to accomplish your goals in the end.
It allows you to inquire into the causes of ill-fortune, instead of just complaining about it, as many are inclined to do.
It gives you the courage to admit your own faults, frivolousness, and weaknesses.
It gives you the strength to keep a foothold when the tide turns against you, and to continue to climb upward in the face of obstacles.
3

 Empathize with others.
The most important way to strengthen your character is to empathize with others, especially the weaker souls, and to love others as yourself. This may come at some cost, causing you to examine your own motives so that you can empathize ungrudgingly. Empathizing differs from sympathizing in connotation, as empathizing requires you to project yourself and engage as needed (walk in and help clear the other person's pathway);[1] whereas sympathy implies an emotional but passive reaction, such as listening, looking and mimicking without extending oneself.
4

 Favour strong reason, as Emmanuel Kant did.
Seek the truth. Favour reason over pure emotion. The person with a strong character will examine all the facts using the head, and not be biased by emotions from the heart. Settle all matters upon reason alone, and avoid entangling yourself in the chaos of your sensations.[2]
5

 Be a leader.
Be neither a pessimist nor an optimist, but a leader. A pessimist complains about the wind, an optimist expects the adverse wind conditions to improve, but the leader takes action to adjust the sails and ensure that they're ready to cope whatever the weather.
6

 Guard against irrational impulses, such as the craving for sweets.
Guard against irrational impulses. Aristotle and Aquinas considered that there are seven human passions: love and hatred, desire and fear, joy and sadness, and anger. While good in themselves, these passions can bypass our intellect and cause us to love the wrong things eat too much food, fear things irrationally, or become overwhelmed in sadness or by anger. The answer is found in always looking before you leap and in practising good habits to free yourself from the enslavement of your own passions. Inordinate, sensual appetites are the marks of a weak character; the ability to delay gratification and practice self control is a sign of strength.
7

 Be content with what you have.
Be content with your lot. Appreciate your own values and that which you have. Imagining that the grass is greener somewhere else is a recipe for lifelong unhappiness; remember that doing so is actually projecting your assumptions about how others live. It is better to focus on how you live.
8

 Be brave.
Be brave enough to take calculated risks. If you shun the battle, you must forgo the victory, and the joy associated therewith. Neither be cowardly, nor aloof, nor evade your rightful duties, but be courageous so as to contribute your part to the progress of humankind.
9

 Fix on the right path, and walk therein, turning neither to the left nor to the right.
Dismiss external suggestions contrary to the resolution you are fixed upon. Every individual has his or her interest foremost in mind, whether consciously or unconsciously. Neither impose your will upon others, nor allow others to impose their will upon you. Remain aware and accepting that different people will have different suggestions, and that you cannot please everyone. Find the right path, and walk therein, neither turn to the right nor the left. Govern yourself, and never abandon the right path.
10

 Learn to do good.
Learn to do good and eschew evil. Seek peace and pursue it earnestly. Aim not for personal goals that trample on others' needs, but aim after noble and worthy motives to benefit society as a whole. If you seek personal gains, you will run into conflicts with others, and, in the end, you will inevitably fail. If you seek the mutual good, all will benefit, and you will also find satisfying personal gains as well.
11

 Master your feelings.
Learn to master your feelings. Avoid letting anything other than sound reason dictate your decisions in the conduct of everyday life. It might often be difficult, and at times impossible, to not yield to feelings deep within your soul, but you can learn to suppress their manifestations, and to overcome them through relying on common sense and sound judgment.
12

 Always seek the middle ground.
Be neither prodigal, nor miserly, but seek the middle ground. The ability to seek the middle ground is the mark of a strong character capable of resisting extremes.
13

 Be calm, and you will have smooth sail.
Be calm in all things. Calmness is a state of quietude that enables you to concentrate and reassemble your divergent thoughts and meditate with profit. Contemplation leads to ideas, and ideas lead to opportunities, and opportunities lead to success. Calmness is a sine qua non of a strong character. Without calmness, there can be no strength in character. Without calmness, passion can easily become overheated, turning into an intense desire and interfering with sound reason. Calmness is not the foe of feelings, but its regulator, permitting their proper expression.
14

 Be positive.
Focus on the positives in life, and spare little time for the negatives. A physician once said to a young woman complaining of all sorts of troubles for which she asked of him a cure: "Don't think of them: it is the most powerful of all cures." Physical and mental pains can be alleviated by effort of the will to divert the mind into opposite channels, and exacerbated by the dwelling upon them.
15

 Oppose fatalism. You can change destiny by adjusting the sails.
Oppose fatalism. Each individual is responsible for his or her own development and fortune. To accept fatalism, that is, to believe that destiny is somehow immovable, is to discourage yourself from attempting all initiatives to improve your life and self. Destiny is blind and deaf; it will neither hear nor regard us. Instead, remember that fixing calamities and changing destiny for the better are ways to strengthen your character and improve your lot in life. Work out your happiness; don't wait for someone else or something else to do it for you because it will never happen unless you persevere.
16

 Be patient.
Have patience. An individual with a strong character will not quit when faced with obstacles, but will persevere to the end and overcome all obstacles. Learn to delay gratifications in life, learn to wait, and learn that time is your friend. It also helps to know which battles are worth it, and when to let things rest; sometimes letting go is more important than clinging to a sinking ship.
17

 Overcome all fears, such as the fear of heights.
Conquer all fears. Timidity is a stumbling block to success. Entertain no superstitions based upon superficial observations, but accept facts based upon solid reason. Avoid building your foundation upon sand, preferring instead to build upon a rock. Once you overcome fear, you will have the strength of character to think, to have resolve, and to act victoriously.
18

 To grow a beautiful and fruitful garden like this, you must clear the soil by removing all the weeds.
Just as a gardener must remove all the weeds to grow the crops, so you must likewise dispel from your mind all feeble thoughts, that act as weeds undermining your strength. Guard against excessive emotions, and attribute to them their exact significance. Whenever you find yourself preoccupied with some overwhelming emotion, immediately occupy yourself with something else for fifteen minutes, up to an hour. Many great warriors have lost their lives when they react too brashly to insults, and go to fight prematurely against their taunters without adequate preparations, acting merely upon a hot head. Learn to overcome such a weakness with practice, remembering that anger is a common vice in all those of weak character.
19

 Have a business plan.
Exercise coolness, circumspection, discernment, and prudence in business. Cultivate your mind with logic, and conduct your affairs accordingly.
20

 Be honest always.
Always be truthful in all things and every aspect of life. If you are dishonest, you are dishonest with yourself, and that is an assault upon your own character.
21

 Work hard.
Finally, excel wherever you are, and do your best in whatever you do. Work hard, and shun idleness like the plague. By the same token, learn to appreciate quality leisure time for its ability to rejuvenate and inspire you to return to your good deeds.





Tips

 Be happy.
Be happy. Happiness is health. Happiness gives you strength to overcome the monotonous and dispel boredom in life. It allows you to make the best of all things. Happiness is a state of mind. It has been observed, that there are more smiles on the faces of those of modest means, than on those of wealthy bankers on Wall Street.

 Be a good friend.
Be a good friend. Devote yourself to your friend, and be willing to sacrifice. Never hold grudges, and dismiss all petty incidents. Live in harmony with others. Do not be egoistic: always think in terms of others' interests.

 Exercise!
Do physical exercise to train your endurance. The mind and the body interconnect. So train your physical endurance to strengthen your mental endurance.

 Have discipline.
Have discipline and self-control. Flee from bad impulses (including destructive works or actions that one regrets later) -- and compulsive-obsessive behaviors that become a habit and deform character.



 Mechanical engineering semester 5 syallabus , mumbai university, mumbai, India

Fluid Mechanics
T.E. Sem. V [MECH]
EVALUATION SYSTEM
 Time  Marks  Theory Exam  3 Hrs.  100
Practical Exam  02(PE)  25
Oral Exam  −  25
Term Work  −  25
SYLLABUS
1.  Fluid Definition and Properties
Concept of continuum, Newton’s law of viscosity, classification of fluid.
Fluid Statics
Definition  of  body  forces  and  surface  forces,  static  pressure,  Pascal’s  law,  Derivation  of  basic
hydrostatic  equation,  Forces  on  surfaces  due  to  hydrostatic  pressure,  Buoyancy  and  Archimedes
Principle.
2.  Fluid Kinematics
Understanding  of Eulerian and Lagrangian−approach to solutions, Velocity and acceleration  in an
Eulerian  flow  field,  Definition  of  streamlines,  path  lines  and  streak  lines.  Definition  of  steady  /
unsteady,  uniform  /  non−uniform,  one  two  and  three−dimensional  flows.  Understanding  of
differential and integral methods of analysis. Definition of a control volume and control surface, types
of control volumes.
3.  Fluid Dynamics
Equations  for  the  control  volume  :  Integral  equations  for  the  control  volume;  Reynolds transport
theorem  with  proof.  Application  to  mass,  energy  and momentum  transport  (linear  and  angular).
Differential  equations  of  the  control  volume:  Conservation  of  mass  (two  and  three  dimensional).
Navier  − Stokes  equations  (without  proof)  for  rectangular  and  cylindrical  co−ordinates.   Exact
solution of Navier −stokes equations: viscous laminar flow of a fluid through a pipe, viscous laminar
flow of a fluid through planes (both stationary, one plane moving with a uniform velocity), Fluid flow
through  concentric  cylinders.  Euler’s  equations  in  two,  three  dimensions;  Bernoulli’s  equation.
Kinetic energy correction factor and momentum energy correction factor.
4.  Ideal Fluid Flow Theory
Definition  of  stream  functions  and  velocity  potential  functions,  rotational  and  irrotational  flows  in
two dimensions, definition of source, sink, vortex,circulation. Combination of simple flow patterns−
e.g. flow past Rankine full body and Rankine half body, Doublet, flow past cylinder with and without
circulation, Kutta −Joukowsky law.
Real Fluid Flows
Definition  of  Reynolds  number,  Turbulence  and  theories  of  turbulence  − Prandtl’s  mixing  length
theory, Eddy viscosity theory, k −epsilon theory. Velocity profiles for turbulent flows: one −seventh
power law, universal velocity profile, velocity profiles for smooth and rough pipes, Darcy’s equation
for head lost in pipe flows, pipes in series and parallel, hydraulic gradient line, Moody’s diagram.
5.  Boundary Layer Flows
Concept  of  boundary  layer  and  definition  of  boundary  layer  thickness,  displacement  thickness,
momentum thickness, energy thickness. Growth of boundary layer, laminar and turbulent boundary
K.G.C.E. KARJAT
layers,  laminar  sub−layer,  Von−Karman  momentum  integral  equations  for  the  boundary layers,
analysis  of  laminar and turbulent boundary  layers,  calculation  of  drag., separation  of the boundary
layer and methods to control it, concept of streamlined and bluff bodies. Aerofoil theory: definition of
an aerofoil, lift and drag on aerofoils, induced drag.
6.  Introduction to Computational Fluid Dynamics
Basic concepts, Basic aspects of discretization. Grids with appropriate transformation, some simple
CFD  techniques.  Finite  volume  method  of  analysis,  solutions  to  simple  flow  problems.  Numerical
solution by means of an implicit method and pressure correction method.
References :
1.  Fluid Mechanics (Streeter and Wylie)McGraw Hill
2.  Mechanics of Fluid 3
rd
edition (Merle Potter, David Wiggert)Cengage Learning
3.  Fundamental of Fluid Mechanics 5
th
edition (Munson)Wiley
4.  Fluid Mechanics (Frank M. White)McGraw Hill
5.  Fluid Mechanics (Cengel, Yunus, Bhattacharya, Souvik)McGraw Hill
6.  Fluid Mechanics (K.L. Kumar)
7.  Introduction to Computational Fluid Dynamics (Niyogi)Pearson Education
8.  An Introduction to Computational Fluid Dynamics  The Finite Volume Method 2
nd
edition  (Versteeg)
 Pearson Education
9.  Introduction to Fluid Mechanics 5
th
edition (Fox)Wiley
10.  Introduction to Fluid Mechanics, (Shaughnessy)et al, OxFord
11.  Introduction to Fluid Mechanics and Fluid Machines 2
nd
ed., Tata McGraw Hill
12.  Fluid Mechanics (Yunus Cengel and John Cimbala) Tata McGraw Hill.
13.  Advanced Fluid Dynamics (Muralidhar and Biswas)
14.  Fluid Mechanics (Douglas)et.al. 5
th
, Pearson Education
15.  Computational Fluid Dynamics (John Anderson)McGraw Hill
16.  Fluid Mechanics with Engineering Applications (John Finnemore, Joseph Franzini)McGraw Hill
17.  1000 Solved Problems in Fluid Mechanics (K. Subramanya)Tata McGraw Hill

Graphic User Interface and Database Management
T.E. Sem. V [MECH]
EVALUATION SYSTEM
 Time  Marks  Theory Exam  −  −
Practical Exam  04(PE)  50
Oral Exam  −  50
Term Work  −  50
SYLLABUS
1.  GUI
Murphy ’s Law of GUI Design, Features of GUI, Iconsand graphics, Identifying visual cues, clear
communication, color selection, GUI standard, planning GUI Design Work. Goal Directed Design,
Software  design,  Visual  Interface  design,  Menus,  Dialog  Boxes,  Toolbars,  Gizmo-  laden  dialog
boxes, Entry gizmos, extraction gizmos, visual gizmos.
Visual programming; Software Component Mindset-role of programming code.
2.  VB. Net
Building  objects  :  Understanding  objects,  building  classes,  reusability,  constructor,  inheritance  the
frame work classes.
Advanced  Technique  :  Building  a  favorites  viewer  using  shared  properties and  methods,
understanding OOP and memory management Building class libraries:- Understanding class libraries,
Using strong names, Registering assemblies, Designing class libraries.
Creating your own custom controls : Windows forms control, Exposing properties from user control,
Inheriting control behavior, Design time or run time, Creating a Form Library.
Accessing Database : Data Access components, Data Binding.
Database  Programming  :  ADO.NET,  The  ADO.NET  Classes  in  action,  Data  Binding  − Unit
References. BVB.Net
3.  Data base concepts and Systems
Introduction  :  Purpose  of  Database  Systems,  Views  of  data,  Data  Models,  database  language,
Transaction  Management,  Storage  Management,  Database  Administrator,  Database  Users,  Overall
System Structure, Different types of Database Systems.
4.  E− −− −R Model :Basic Concepts, Design Issues, Mapping Constraints, Keys, E−R Diagram, Weak Entity set,
Extended E−R features, Design of an E−R Database Schema, Reduction of an E−R schema to Tables.
 Relational Model :Structure of Relational Database, The Relational  Algebra, The tuple relational
calculus, The Domain Relational Calculus, Views.
5.  SQL  :  background,  Basic  Structure,  SET  operations,  Aggregate  functions,  Null  Values,  Nested  Sub
queries, Derived Relations, Views, Modification of Database, Joined Relations, DDL, other SQL features.
 Transaction : Transaction Concepts, State, Implementations of Atomicity and durability, Concurrent
Executions, Serializability, Recoverability, Transaction Definition in SQL.
 Concurrency Control : Lock based protocol, Timestamp based protocol, Validation based protocol,
Multiple  Granularity,  Multi  version  Schemes,  Deadlock  Handing,  Insert  and  Delete  operations,
Concurrency in index structure.
6.  SQL SERVER
 SQL Server Database Architecture- physical Architecture- logical Architecture
 SQL Server administration tasks and tools – The SQL Server Enterprise Manager
Security and user administration, SQL Server Command −Line utilities, Database Maintenance Data
 base design and performance.
K.G.C.E. KARJAT
References:
1.  Using visual basic 6 / (Reselman, Rob: Peasjey, R.Pruchniak)Prentice Hall India pvt. Ltd.,
2.  Visual Basic 6: In Record Time/ (Brown), S.B P B Publication
3.  SQL Server 2000 Black Book (Patrick Dalton, Paul Whitehead)dreamtech press
4.  Beginning SQL Server 2000 for Visual Basic Developers Willis thearon Shroff publishers
5.  An Introduction to Database System (C.J. Date)
6.  Principles of Database System, (Ullman), Galgotia Publications
7.  Database Management Systems (Majumdar / A K Bhattacharyya)Tata Mc Graw Hill
8.  Object Oriented MultiDatabase System (Omran A. Bukhares & A.K. Elmagarmid)Prentice Hall
9.  Database Systems and Concepts, (Henry F. Korth, Sliberschatz, Sudarshan)McGraw Hill
10.  DBMS by Date
11.  Visual Basic 6 Programming Bible (Eric Smith)IDG Books India Pvt. Ltd.
12.  Visual Basic 6 Programming Black Book (Steven Holzner)IDG Books India
13.  GUI Design for dummies, IDG books.
14.  The Essentials of User interface Design, (Alan Cooper)IDG Books India
15.  SQL Server 2000 Black gook (Patrick Dalton)IDG Books India Pvt.
16.  Visual Basic 6 Programming Blue Book by (Peter G. Aitken)Technology Press
17.  Microsoft SQL Server 7.Q Bjeletich S.: (Mable G. Techmedia)

Heat and Mass Transfer
T.E. Sem. V [MECH]
EVALUATION SYSTEM
 Time  Marks  Theory Exam  3 Hrs.  100
Practical Exam  −  −
Oral Exam  −  25
Term Work  −  25
SYLLABUS
1.  Conduction
Mechanism  of  heat  transfer  by  Conduction.   Fourier’s  three−dimensional  differential  equation  for
Conduction with heat generation in unsteady state in the Cartesian co−ordinates. Solution of Fourier’s
equation for one−dimensional steady state Conduction through isotopic materials of various configurations
such as plane wall, plane composite wall, cylindrical and spherical composite walls. (For cylindrical  and
spherical walls, derivation of Fourier’s three −dimensional equation is NOT included.)
2.  Unsteady state Conduction through a plane wall having no internal resistance. Users of Heisler charts.
Extended  surfaces.  Solutions  for  heat  transfer  through  rectangular  fins.  Types  if  fins  and  their
applications. Effectiveness and efficiency of fins.
3.  Convection
Mechanism  of  heat  transfer  by  convection.  Natural  and  Forced  convection.   Hydrodynamic  and
thermal boundary layers. Similarity between velocity profile and temperature profile. Heat transfer
coefficient (film coefficient) for Convection. Effect of various parameters such as physical properties
of the  fluid, system  geometry, fluid flow  etc. on heat transfer coefficient. Heat pipe−Introduction
and  application.   Principle  of  dimensional  analysis.  Application  of  dimensional  analysis  to
Convection  for  finding  heat  transfer  coefficient.   Empirical  relations  for  Convection.  Physical
significance  of  dimensionless  numbers  such  as  Nusselt’s  Number,  Grashoff’s  Number,  Prendtl’s
Number, Reynolds Number and Stanton’s Number. Reynolds analogy between momentum and heat
transfer.  2.8.  Heat  transfer  in  condensation.  Nusselt’s  theory  of  laminar  film  Condensation.  Heat
transfer in boiling Curve & critical heat flux.
4.  Radiation
Mechanism of heat transfer by Radiation. Concept of black body and grey body. Emissive power and
Emissivity. Basic laws of Radiation: Planck’s law,Kirchoff’s law, Stefan −Baoltzman law, Wien’s−
displacement  law  and  Lambert’s  Cosine  law.  Intensity  of  Radiation  Radiosity.   Radiation  heat
exchange between two black bodies. Electrical network analogy for radiation heat exchange between
two and three grey bodies. Shape factor for simple geometries. Properties of shape factor.
5.  Heat Exchangers
Classification of heat exchangers. Logarithmic Mean Temperature Difference, Correction factor and
effectiveness of heat exchangers. Effectiveness asa function of Number of Transfer Units and heat
capacity ratio. Overall heat transfer coefficient,Fouling factor.
6.  Mass Transfer
Mechanism  of  mass transfer. Importance  of  mass transfer  in  engineering. Fick’s  law  of  diffusion.
Steady State diffusion of gases and liquids throughplane, cylindrical and spherical walls. Equimolal
diffusion.   Isothermal  evaporation  of  water  into  air.   Convective  mass  transfer  and  mass  transfer
coefficient. Empirical relations for mass transfer,in terms of Sherwood Number, Reynolds Number
and Schmidt’s number.
K.G.C.E. KARJAT
References:
1.  Elements of Heat Transfer (Jakole and Hawkins)
2.  Heat Transfer (James Sucec)JAICO Publishing House
3.  Heat Transfer (Donald Pitts & L.E. Sisson Schaums Series)McGraw Hill International
4.  Engineering Heat Transfer (James R. Weity)
5.  Engineering Heat Transfer (Shao Ti Hsu)
6.  Heat and Mass Transfer (Eckert and Drake)
7.  Heat Transfer (M.Necati Ozisik)McGraw Hill int. education
8.  Heat Transfer (Incropera and Dewitt)Wiley India
9.  Fundamentals of Momentum, Heat and Mass Transfer4
th
ed.(Welty)Wiley India
10.  Engineering Heat Transfer N.V.Suryanarayana Penram publication
11.  Heat Transfer (S.P. Sukhatme)University Press
12.  Heat Transfer (Ghosdastidar)Oxford University press.
13.  Heat Transfer 9
th
ed. (J.P.Holman)McGraw Hill
14.  Principles of Heat Transfer 6
th
ed., (Frank Kreith)CENGAGE Learning
15.  Heat and Mass Transfer (C.P.Arora) Dhanpatrai and Co.
16.  Heat and Mass Transfer (Prof. Sachdeva)
17.  Heat and Mass Transfer (R. Yadav)
18.  Heat Transfer (Y.V.C. Rao)University Press
19.  Heat and Mass Transfer (R.K.Rajput)S.Chand & Company Ltd.
20.  Fundamentals of Heat and Mass Transfer Incropera Wiley India
21.  Heat and Mass Transfer (Domkundwar)Dhanpatrai and Co.
22.  Heat and Mass Transfer 2
nd
ed. (Nag P.K.)Tata McGraw Hill
23.  Introduction to Thermodynamics and Heat Transfer with ESS Software 2
nd
ed.(Yunus A. Cengel)
 McGraw Hill International
24.  Fundamentals of Heat and Mass Transfer (Thirumaleshwar)Pearson Education

Mechanical Measurement & Metrology
T.E. Sem. V [MECH]
EVALUATION SYSTEM
 Time  Marks  Theory Exam  3 Hrs.  100
Practical Exam  −  −
Oral Exam  −  25
Term Work  −  25
SYLLABUS
1. Significance  of  Mechanical  Measurements,  Classification  of  measuring  instruments,  generalized
measurement system, types of inputs: Desired, interfering and modifying inputs.
Static  characteristics:  Static  calibration,  Linearity,  Static  Sensitivity,  Accuracy,  Static  error,
Precision, Reproducibility, Threshold, Resolution, Hysteresis, Drift, Span & Range etc.
Error in measurement: Types of errors, Effect of component errors on combination and distribution
of combination errors on components, Probable errors.
2.  Displacement  measurement: Transducers  for  displacement  measurement,  Potentiometers,  LVDT,
Capacitance type, Digital transducers (optical encoder), Nozzle flapper transducer.
Strain  measurement: Theory  of  Strain  Gauges,  Gauge  factor,  Temperature  compensation,  Bridge
circuit, Orientation of Strain Gauges for Force andTorque measurement, Strain Gauge based Load
Cells and Torque Sensors.
3.  Measurement  of  angular  velocity:  Tachometers,  Tachogenerators,  digital  tachometers  and
Stroboscopic methods.
Pressure  measurement: Pressure  standards,  Elastic  pressure  transducers  viz.  Bourdon  Tubes,
Diaphragm,  Bellows  and  piezoelectric  pressure  sensors.  High−pressure  measurements,  Bridgman
gauges Calibration of pressure sensors.
Vacuum measurement:  Vacuum  gauges viz. McLeod gauge,  Ionization and Thermal Conductivity
gauges.
4.  Acceleration  Measurement: Theory  of  accelerometers  and  vibrometers.  Practical  Accelerometers,
strain gauge based and piezoelectric accelerometers.
Temperature  measurement:  Thermodynamic  Temperature  Scale  and  IPTS.  Electrical  methods,  of
temperature measurement, Resistance thermometers, Thermistors and Thermocouples, Pyrometers.
5.  Metrology
Standard  of  measurement,  line  and  end  standards  wave  length  standard,  working  standards,
requirements  of  interchangeability,  allowance  and  tolerance,  limits  and  fits,  B.S.  and  I.S.
specifications  for  limits  and  fits,  limits  gauging, automatic  gauging,  needs  in  semi−automatic,
automatic production, principle of operation, features of in process gauging system.
6.  Use  of  comparators  such  as  mechanical,  optical,  electrical,  electronics  and  pneumatic.   Angular
measurements,  angle  gauges,  sine  bar,  levels,  clinometers  and  taper  gauges.   Metrology  of  screw
threads, limits gauging of screw threads. Gear measurements. Measurement of flatness and square
ness, surface finish definition and measurement of  surface texture, study and use of profile projector
and tool maker’s microscope, dividing head and auto−collimator.
K.G.C.E. KARJAT
References :
1.  Experimental Methods for Engineers (J.P.Holman)McGraw Hills Int. Edition.
2.  Engineering Experimentation (E.O.Doeblin)McGraw Hills Int. Edition.
3.  Mechanical Measurements (S.P.Venkateshan)Ane books, India
4.  Metrology for Engineers (J.F.W Galyer & C.R.Shotbolt)
5.  Theory and Design for Mechanical Measurements, 3
rd
ed., Wiley
6.  Principals of Engineering Metrology (Rega Rajendra)Jaico. Publication
7.  Measurement Systems (Applications and Design) 5
th
ed.- (E.O. Doebelin)−McGraw Hill.
8.  Dimensional Metrology, (Connie Dotson), CENGAGE Learning
9.  Mechanical  Engineering  Measurement  (Thomas  Beckwith,  N.Lewis  Buck,  Roy  Marangoni) Narosa
Publishing House, Bombay.
10.  Mechanical Engineering Measurements (A.K.Sawhney)−Dhanpat Rai & Sons. New Delhi.
11.  Instrumentation Devices & Systems (C.S. Rangan & G.R.Sarrna)Tata McGraw Hill.
12.  Instrumentation & Mechanical Measurements (A.K.Thayal)
13.  Engg. Metrology (R.K.Jain)